инверсная полугруппа

инверсная полугруппа
apgrąžinis pusgrupis statusas T sritis fizika atitikmenys: angl. inverse semigroup vok. inverse Halbgruppe, f rus. инверсная полугруппа, f pranc. semi-groupe inverse, m

Fizikos terminų žodynas : lietuvių, anglų, prancūzų, vokiečių ir rusų kalbomis. – Vilnius : Mokslo ir enciklopedijų leidybos institutas. . 2007.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • ИНВЕРСНАЯ ПОЛУГРУППА — полугруппа, в к рой для любого элемента асуществует единственный инверсный к нему элемент а 1 (см. Регулярный элемент). Свойство полугруппы Sбыть инверсной эквивалентно каждому из следующих: S регулярная полугруппа и любые два ее идемпотента… …   Математическая энциклопедия

  • ПОЛУГРУППА С УСЛОВИЕМ КОНЕЧНОСТИ — полугруппа, обладающая нек рым свойством q таким, что всякая конечная полугруппа обладает этим свойством (такое свойство q наз. условием конечности). В определении свойства q могут фигурировать элементы полугруппы, ее подполугруппы и т. п.… …   Математическая энциклопедия

  • БИЦИКЛИЧЕСКАЯ ПОЛУГРУППА — полугруппа с единицей и с двумя образующими заданная определяющим соотношением . Одна из реализаций Б. п. декартов квадрат , где множество неотрицательных целых чисел относительно операции Б. п. является инверсной полугруппой и как инверсная… …   Математическая энциклопедия

  • РЕГУЛЯРНАЯ ПОЛУГРУППА — полугруппа, каждый элемент к рой регулярен. Произвольная Р. п. Sсодержит идемпотенты (см. Регулярный элемент), и строение Sв значительной степени определяется строением и расположением в Sмножества всех ее идемпотентов Е(S). Р. п. с единственным… …   Математическая энциклопедия

  • КЛИФФОРДОВА ПОЛУГРУППА — вполне регулярная полугрупп а, полугруппа, каждый элемент к рой является групповым, т. е. принадлежит нек рой подгруппе. Элемент полугруппы будет групповым тогда и только тогда, когда он вполне регулярен (см. Регулярный элемент). Свойство… …   Математическая энциклопедия

  • ФИНИТНО АППРОКСИМИРУЕМАЯ ПОЛУГРУППА — резидуально конечная полугруппа, полугруппа, для любых двух различных элементов аи bк рой существует такой ее гомоморфизм j в конечную полугруппу S, что Свойство полугруппы Sбыть Ф. а. п. эквивалентно тому, что . подпрямое произведение конечных… …   Математическая энциклопедия

  • ХАРАКТЕР — полугруппы ненулевой гомоморфизм коммутативной полугруппы Sс единицей в мультипликативную полугруппу комплексных чисел, состоящую из всех чисел с модулем 1 и нуля. Иногда под X. полугруппы понимают ненулевой гомоморфизм в мультипликативную… …   Математическая энциклопедия

  • РЕГУЛЯРНЫЙ ЭЛЕМЕНТ — п о л у г р у п п ы элемент a такой, что а=аха для нек рого элемента х данной полугруппы; если при этом ах=ха, то аназ. в п о л н е р е г у л я р н ы м. Если a Р. э. полугруппы S, то главный правый (левый) идеал в S, порожденный а, порождается… …   Математическая энциклопедия

  • ОБОБЩЕННАЯ ГРУППА — то же, что инверсная полугруппа …   Математическая энциклопедия

  • apgrąžinis pusgrupis — statusas T sritis fizika atitikmenys: angl. inverse semigroup vok. inverse Halbgruppe, f rus. инверсная полугруппа, f pranc. semi groupe inverse, m …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”